Table IV

Tests	Oral $E D_{50}$ responses in $\mathrm{mg} / \mathrm{kg}$		
	$\begin{gathered} \text { Compd } \\ 30 \end{gathered}$	Compd 40	Phenylbutazone
Antiedema ${ }^{\text {a }}$	40	40	17.9
Antipyresis	20.5	18	17.5
Analgetic (AcOH)	130	130	172
Vascular permeability (AcOH and Evans Blue)	160	170	160
Acute oral LD_{50} (mice)	1420	980	760

mole) of LAH in 200 ml of THF. The mixt was refluxed 12 hr and cooled, and the complex was carefully decompd by sequential dropwise addns of 2.9 ml of $\mathrm{H}_{2} \mathrm{O}, 2.9 \mathrm{ml}$ of $15 \% \mathrm{NaOH}$ soln, and 8.7 ml of $\mathrm{H}_{2} \mathrm{O}$. After stirring for 3 hr the mixt was filtered, and the filter cake washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrates were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and gassed with dry HCl . The crude HCl salt was crystd from EtOH to give $7.8 \mathrm{~g}(78 \%)$.

4-p-Chlorobenzoyl-4,5-dihydro-1,3-dimethyl-1 H -pyrazolo [3,4-b][1,4]benzoxazepine (45). A soln of $5.25 \mathrm{~g}(0.03 \mathrm{~mole})$ of p-chlorobenzoyl chloride in 50 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added slowly to a stirred soln of 6.45 g (0.03 mole) of base prepd from 30 , and 2.4 g (0.03 mole) of pyridine in 300 ml of $\mathrm{Et}_{2} \mathrm{O}$. The mixt was stirred 6 hr at room temp and successively washed with $\mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{NaHCO}_{3}$, and finally with $\mathrm{H}_{2} \mathrm{O}$. The dried $\mathrm{Et}_{2} \mathrm{O}$ soln $\left(\mathrm{MgSO}_{4}\right)$ was concd in vacuo. One recrystn from EtOH gave $8.3 \mathrm{~g}(78 \%)$. Other compds prepd by this method were $37,38,41,44$, and 46 .

4-Chloroformyl-4,5-dihydro-1,3-dime thyl-1 H -pyrazolo [3,4-b][1,4]benzoxazepine (31). A satd soln of COCl_{2} in EtOAc was made by bubbling a slow stream of the gas into 800 ml of EtOAc, chilled in ice, for 30 min . To this was added rapidly a soln of $47 \mathrm{~g}(0.22$ mole) of base prepd from 30 , in a min of EtOAc. The mixt was refluxed for 3 hr and then gassed again with COCl_{2} for 0.5 hr . The hot mixt was filtered, and the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The dry filtrate was concd to an oil which crystd. One recrystn from EtOAc gave $21 \mathrm{~g}(43 \%)$.

4,5-Dihydro-1,3-dimethyl-4(2-propynylcarbamoyl)-1 H -pyrazolo-[3,4-b] [1,4]benzoxazepine (43). A soln of 2.2 g (0.04 mole) of propargylamine and 4.56 g (0.02 mole) of 31 in 100 ml of EtOAc was stirred 12 hr at room temp. The soln was washed with $\mathrm{H}_{2} \mathrm{O}$, dried (MgSO_{4}), and concd to a solid. Crude product was crystd from EtOAc to give $3.2 \mathrm{~g}(56 \%)$.

4-Azidoformyl-4,5-dihydro-1,3-dimethyl-1 H -pyrazolo[3,4-b][1,4]benzoxazepine (32). A soln of 4.56 g (0.02 mole) of 31 and $2.6 \mathrm{~g}(0.04$ mole $)$ of NaN_{3} in 100 ml of $90 \% \mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$ was stirred for 12 hr . The soln was concd, and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}$ and filtered, and the filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$. The solid obtd upon concn was crystd from Skelly B to give 1.2 g (22%).

4-Carbamoyl and Thiocarbamoyl Derivatives of 4,5-Dihydro-1,3-dimethyl-1 H -pyrazolo[3,4-b][1,4]benzoxazepine. A soln (0.037 mole) of RNCO or RNCS and 8 g (0.037 mole) of base prepd from 30 in 250 ml of $\mathrm{Et}_{2} \mathrm{O}$ was stirred for 12 hr . The soln was concd, and the resulting solids were crystd to give yields ranging from 55 to 88%. Compds $39,42,47$, and 48 were prepd in this manner.

4,5-Dihydro-1,3-dimethyl-4-formyl-1 H -pyrazolo $[3,4-b][1,4]$ benzoxazepine (33). Compd 30 ($6.4 \mathrm{~g}, 0.03 \mathrm{~mole}$) was refluxed for 2 hr in 75 ml of ethyl formate. The soln was concd and the oil chilled to effect crystn. Recrystn from Skelly B gave $4.3 \mathrm{~g}(60 \%)$.

5-Carbamoyl-4,5-dihydro-1,3-dimethyl-1 H -pyrazolo [3,4-b][1,4]benzoxazepine (34). An aq soln of KNCO ($3.3 \mathrm{~g}, 0.04$ mole) was added to $10 \mathrm{~g}(0.04 \mathrm{~mole})$ of 31 in 70 ml of $\mathrm{H}_{2} \mathrm{O}$. After 1 hr the solid was collected and washed with $\mathrm{H}_{2} \mathrm{O}$. Crystn from EtOH gave $6.3 \mathrm{~g}(61 \%)$.

4,5-Dihydro-1,3,4-trimethyl-1 H-pyrazolo [3,4-b][1,4]benzoxazepine (36). A soln of 21.5 g (0.10 mole) of base prepd from 30 in 50 ml of dioxane was added to a stirred mixt of 4.8 g (0.10 mole) of NaH in 150 ml of dioxane. The mixt was heated to 70° for 2 hr and then cooled to 20° while a soln of $14.2 \mathrm{~g}(0.10 \mathrm{~mole})$ of MeI in an equal vol of dioxane was added dropwise. The temp was then raised to 40° for 3 hr . After removal of solvent, the residue was taken up in $5 \% \mathrm{HCl}$ and washed with $\mathrm{Et}_{2} \mathrm{O}$. The acid soln was basified, extd with $\mathrm{Et}_{2} \mathrm{O}$, dried, and filtered, and the filtrate was evapd to yield a solid. The solid crystd from Skelly B to give $15.6 \mathrm{~g}(67 \%)$. Compd 40 was also prepd by this method.

References

(1) W. E. Coyne and J. W. Cusic, J. Med. Chem., 10, 541 (1967).
(2) Karl Thomae, French Patent 1,510,324 (1968); Chem. Abstr., 70, 47516 (1969).
(3) Karl Thomae, British Patent 1,055,221 (1967); Chem. Abstr., 66, 65542 (1967).
(4) C. Musante, Gazz. Chim. Ital., 75, 109 (1945).
(5) A. O. Geiszler, U. S. Patent 3,121,092 (1962).
(6) C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111, 544 (1962).
(7) B. A. Whittle, Brit. J. Pharm. Chem., 22, 296 (1964).

Studies on Cardiovascular Drugs. 5. ${ }^{1}$ 1-Amino-3-phenoxy-2-propanol Derivatives as β-Adrenergic Blocking Agents

Michio Nakanishi,* Tomio Muro, Yasuaki Chihara, Hiroshi Imamura, and Tooru Nakao
Research Laboratories, Yoshitomi Pharmaceutical Industries, Ltd. Yoshitomi-cho, Chikujo-gun, Fukuoka-ken, Japan. Received June 22, 1971

Several 1-amino-3-(substituted phenoxy)-2-propanols have been synthesized and examined for adrenergic β-receptor blocking activity. Of the compds synthesized and tested, 1 -tert-butylamino-3-[0 -(furfuryloxy)-phenoxy]-2-propanol (24), 1-[o-(allyloxymethoxy)phenoxy]-3-tert-butylamino-2-propanol (21), 1-tert-butylamino-3-[o-(tetrahydrofurfuryloxy)phenoxy]-2-propanol (26a, 26b), and 1-tert-butylamino-3-[o-(methoxymethoxy)phenoxy]-2-propanol (2) showed potent activity.

A series of 1-amino-3-naphthoxy-2-propanols was synthesized by Crowther, et al., ${ }^{2}$ and proved to possess potent adrenergic β-receptor blocking properties. Among these compounds, 1-isopropylamino-3-(1-naphthoxy)-2-propanol (propranolol) was selected and has been used in the treatment of various cardiac arrhythmias and angina pectoris. Many synthetic and pharmacological investigations ${ }^{3}$ on 1 -amino-3-bicyclic aromaticoxy-2-propanols have been pursued by a number of workers.

The syntheses and adrenergic β-receptor blocking activities of 1-amino-3-(substituted phenoxy)-2-propanols were reported by Crowther, et al. ${ }^{4}$ They showed that compds bear-
ing substituents on the benzene nucleus, such as alkyl, alkoxy, aryloxy, arylthio, OH, Cl, and NO_{2}, were highly active. These findings prompted us to synthesize some further 1-amino-3-phenoxy-2-propanol derivatives bearing substituents on the benzene nucleus and to evaluate their pharmacological properties in comparison with propranolol.

Chemistry. The dihydroxybenzenes I were allowed to react with the halides III to give the substituted phenols IV, and these (II^{5} and IV) with epichlorohydrin to afford the corresponding epoxides V and VI. Finally, the epoxides (V, VI) were treated with amine VII to give the desired compds

Scheme I

VIII and IX in the usual manner. Formulas and physical properties of the derivatives are shown in Tables I and II.

Assay of the Adrenergic β-Receptor Blocking Activity.

 Activity was evaluated by the antagonistic activity of test compounds to the relaxing effect of isoproterenol. A guinea pig weighing 250-350 g was sacrificed and its tracheal tube was removed. A tracheal strip prepn was made according to Takagi, et al., ${ }^{6}$ and suspended in 20 ml of organ bath filled with aerated Tyrode solution at 37°. An initial basal tension of 0.5 g was applied to the tracheal prepn. A constant response of the prepn to ACh was induced by repeated administration of ACh at $10^{-5} \mathrm{~g} / \mathrm{ml}$ into the bath. Following this procedure, a cumulative conen response curve of isoproterenol was determined before and after administration of test compds. Isoproterenol was added into the tube beginning with $10^{-8} \mathrm{~g} / \mathrm{ml}$. The activities of test compounds were evaluated by PA_{2}, which was reported by Van Rossum. ${ }^{7}$ The results were shown as mean value of the PA_{2} of several experiments.Structure-Activity Relationships. The amino group of 1-amino-3-aryloxy-2-propanols had to be secondary for potent adrenergic β-receptor blocking activity, as also reported by

Ghouri, et al., ${ }^{8}$ and by Boissier, et al. ${ }^{9}$ Introduction of a bulky substituent, such as cyclohexyl, into the amino group led to less active compounds, as reported by Schwender, et al. ${ }^{3 d}$ The potency order for amino substituents in this series was tert- $\mathrm{Bu}>i-\mathrm{Pr}>\sec -\mathrm{Bu}$. Introduction of a CN group into alkyl substituents on the amino group reduced the activity.

As for the substituents on benzene nucleus, an o-(alkoxysubstituted)alkoxy group enhanced the activity, whereas para isomers (3 and 22) showed low activity. The lowering of the activity was observed when either the bulkiness of an alkyl group or the chain length of an alkylene group of alkoxy-substituted alkoxy group on the benzene nucleus became larger or longer, respectively. In this type of substituent an allyloxymethoxy group unexpectedly enhanced the activity. It was noteworthy that tetrahydrofurfuryloxy group, which was considered to be a cyclized form of 2-propyloxyethoxy group, potentiated the activity, while the tetrahydropyranyl-2-methoxy group did not.
The compounds bearing o-furfuryloxy, o-[(2-thienyl)methoxy], o-[(3-pyridyl)methoxy], and o-[(2-pyridyl)methyl] groups showed potent activity, but those with an o-[(2-thienyl)methyl] group showed moderate activity. The potency order observed with ortho substitution on a benzene nucleus in the 1-tert-butylamino-3-(substituted phenoxy)-2-propanol series was furfuryloxy (24) $>$ allyloxymethoxy (21) $>$ tetrahydrofurfuryloxy (26a) $>$ methoxymethoxy (2), 2-methylthioethoxy (20) $>$ ethoxymethoxy (6), 2-thienylmethoxy (28) >3-pyridylmethoxy (32). 2-pyridylmethyl (37) $>$ 2-methoxyethoxy (13) $>$ tetra-hydropyranyl-2-methoxy (35) >2-pyridyloxy (33), benzyloxymethoxy (10) $>$ 2-phenyloxyethoxy (18), 2-thienylmethyl (38).
As described above, the compounds showing PA_{2} values above 8.75 were 2, 21, 24, and 26a. Further pharmacological and chemical studies on $26 a$ and $26 b$ are in progress in view of their low toxicity and chemical stability.

Experimental Section

All melting points were determined in an open capillary tube in a bath and are uncorrected. Representative procedures for the syntheses of the compds listed in Tables I and II are given below.
o-Furfuryloxyphenol. Into a mixt of $47.5 \mathrm{~g}(0.43 \mathrm{~mole})$ of pyrocatechol, 60 g (0.435 mole) of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 300 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was dropped 50 g (0.43 mole) of furfuryl chloride ${ }^{10}$ with stirring at room temp. After addn, the mixt was gently refluxed for 7 hr and filtered to remove insol material. The filtrate was evapd to dryness in vacuo. The residual oil was dissolved in $\mathrm{C}_{6} \mathrm{H}_{6}$ and insol resinous material was removed (Celite). The soln was extd with aq $5 \% \mathrm{NaOH}$, and the ext was acidified (HCl). The sepd oil was extd with $\mathrm{C}_{6} \mathrm{H}_{6}$, washed with aq $5 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concd to dryness. The residue was distd to give $40 \mathrm{~g}(48.8 \%)$ of the product, bp $105-112^{\circ}(0.01 \mathrm{~mm}), n^{20} \mathrm{D} 1.5672$.
o-(2-Pyridyloxy)phenol. A mixt of 11.0 g (0.1 mole) of pyrocatechol, 14.5 g (0.1 mole) of $\mathrm{K}_{2} \mathrm{CO}_{3}, 0.1 \mathrm{~g}$ of KI , a small amt of Cu powder, and 16.0 g (0.1 mole) of 2-bromopyridine in 60 ml of DMF was stirred at $110-120^{\circ}$ for 10 hr , then filtered, and the filtrate was evapd to dryness in vacuo. The oily residue was dissolved in $\mathrm{C}_{6} \mathrm{H}_{6}$ and extd with aq $5 \% \mathrm{NaOH}$. The ext was acidified with $5 \% \mathrm{HCl}$ and then basified with NaHCO_{3}. The solid was collected and recrystd from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ to give $10.0 \mathrm{~g}(53.5 \%)$ of the product, mp 108111 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1,2-Epoxy-3-[o-(methoxymethoxy)phenoxy] propane. To a soln of 3.3 g (0.059 mole) of KOH in 50 ml of $\mathrm{H}_{2} \mathrm{O}$ were added 8.5 g (0.055 mole) of o-(methoxymethoxy)phenol ${ }^{11}$ and 5.3 g (0.057 mole) of epichlorohydrin. The mixt was stirred at room temp for 7 hr , then extd with $\mathrm{C}_{6} \mathrm{H}_{6}$. The ext was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right) . \mathrm{C}_{6} \mathrm{H}_{6}$ was removed in vacuo and the residue was distd to give $7.0 \mathrm{~g}(64 \%)$ of the product, which crystd on standing, bp $135-140^{\circ}(0.12 \mathrm{~mm})$, mp 30-33 ${ }^{\circ}$.

Table I

 oxymethoxy)phenoxy derivative. ${ }^{d}$ Maleic acid. ${ }^{e}$ Mixt of rac diastereoisomers. $f_{26 \mathrm{~b}}$ is the rac diastereoisomer of $\mathbf{2 6 a}$. $g_{\text {Antiisoproterenol }}$ guinea pig's trachea. $n=$ number of experiments.

1-tert-Butylamino-3-[o-(methoxymethoxyphenoxy)]-2-propanol Fumarate (2). To a soln of 5.0 g (0.024 mole) of 1,2 -epoxy-3-[0 (methoxymethoxy)phenoxy]propane in 50 ml of MeOH were added $2.0 \mathrm{~g}(0.027 \mathrm{~mole})$ of tert $-\mathrm{BuNH}_{2}$ and 0.5 g of $\mathrm{H}_{2} \mathrm{O}$. The mixt was allowed to stand at room temp for 48 hr and then evapd in vacuo. The residue was dissolved in aq 5% oxalic acid. The aq layer was made alk with KOH , and the sepd oil was extd with $\mathrm{C}_{6} \mathrm{H}_{6}$. The ext was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right) . \mathrm{C}_{6} \mathrm{H}_{6}$ was removed in vacuo, and the residue was distd to give $5.6 \mathrm{~g}(83 \%)$ of the product which crystd on standing, bp $140-145^{\circ}(0.07 \mathrm{~mm})$, mp 49-52 ; fumarate, mp 162$163^{\circ}$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-tert-Butylamino-3-[o-(2-pyridylmethyl)phenoxy]-2-propanol Fumarate (37). To a soln of 8.5 g (0.152 mole) of KOH in 350 ml of $\mathrm{H}_{2} \mathrm{O}$ were added 25 g (0.135 mole) of o-(2 -pyridylmethyl) phenol ${ }^{5}$
and 40 g (0.433 mole) of epichlorohydrin. The mixt was stirred at room temp for 6 hr , then extd with $\mathrm{C}_{6} \mathrm{H}_{6}$. The $\mathrm{C}_{6} \mathrm{H}_{6}$ layer was treated with 5 g of decolorizing charcoal, washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and evapd in vacuo. To a soln of the residual oil in 70 ml of MeOH were added $10 \mathrm{~g}(0.147 \mathrm{~mole})$ of tert- BuNH_{2} and 0.5 g of $\mathrm{H}_{2} \mathrm{O}$. The mixt was allowed to stand at room temp for 72 hr and evapd in vacuo. The residual oil was extd with $5 \% \mathrm{HCl}$. The aq layer was made alk with NaOH and the isolated oil was extd with $\mathrm{C}_{6} \mathrm{H}_{6}$. The ext was treated with 5.0 g of decolorizing charcoal, then washed with $\mathrm{H}_{2} \mathrm{O}$. After drying $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right), \mathrm{C}_{6} \mathrm{H}_{6}$ was removed in vacuo. The oily residue yielded 8.5 g (27.5%) of the fumarate, mp 196-200 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-tert-Butylamino-3-[O-(tetrahydrofurfuryloxy)phenoxy]-2propanol Hydrochloride (26a, 26b). To a soln of $77 \mathrm{~g}(0.308$

Table II

${ }^{a}$ See Table I, footnote $a .{ }^{b}$ Fumaric acid. ${ }^{c}$ See Table I, footnote g.
mole) of 1,2-epoxy-3-[o-(tetrahydrofurfuryloxy)phenoxy]propane in 230 ml of MeOH were added $27 \mathrm{~g}(0.369 \mathrm{~mole})$ of tert- BuNH_{2} and 3 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixt was allowed to stand at room temp for 48 hr and then evapd in vacuo. The residual oil was extd with 10% HCl . The aq layer was made alk with NaOH and the sepd oil was extd with $\mathrm{C}_{6} \mathrm{H}_{6}$. The ext was dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$) and concd in vacuo, and the residue was distd to give $89 \mathrm{~g}(89.5 \%)$ of 1-tert-butylamino-3[0 -(tetrahydrofurfuryloxy)phenoxy]-2-propanol, bp 180-186 ${ }^{\circ}$ $(0.07 \mathrm{~mm})$.

Anhyd $\mathrm{HCl}(12.5 \mathrm{~g}, 0.342 \mathrm{~mole})$ was introduced into a chilled soln of 89 g (0.276 mole) of 1-tert-butylamino- 3 - $[0$-(tetrahydrofur-furyloxy)phenoxyl-2-propanol in 270 ml of CHCl_{3}. After 2 hr , white cryst ppts were filtered, dried in vacuo, and recrystd twice from $\mathrm{MeOH}-i-\mathrm{Pr}_{2} \mathrm{O}$ to give 39 g of one of the racemic diastereoisomers of the product, mp 118°. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The filtrate was evapd to dryness in vacuo. The solid residue was collected and recrystd twice from $\mathrm{MeOH}-i-\mathrm{Pr}_{2} \mathrm{O}$ to give 37 g of the other racemate, mp 151-154 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

References

(1) M. Nakanishi, H. Imamura, T. Nakamura, and T. Kimura, Yakugaku Zasshi, in press.
(2) A. F. Crowther and L. H. Smith, J. Med. Chem., 11, 1009 (1968).
(3) (a) F. Troxler (Sandoz Ltd.), Swiss Patent 469,002 (1969); Chem. Abstr., 71, 70493 (1969); (b) G. E. Moore and S. R. O'Donnel, J. Pharm. Pharmacol, 22, 180 (1970); (c) J. Giudicelli, H. Schmitt, and J. R. Boissier, J. Pharmacol. Exp. Ther., 168, 116 (1969); (d) C. F. Schwender, S. Farber, C. Blaum, and J. Shavel, Jr., J. Med. Chem., 13, 684 (1970); (e) R. D. Robson and H. R. Kaplan, J. Pharmacol. Exp. Ther., 175, 157 (1970); (f) B. Levy and W. Wasserman, Brit. J. Pharmacol., 39, 139 (1970); (g) C. Goldenberg, R. Wandestrick, F. Binon, and R. Charlier, Chim. Ther., 5(4), 285 (1970).
(4) A. F. Crowther, D. J. Gilman, B. J. McLoughlin, L. H. Smith, R. W. Turner, and T. M. Wood, J. Med. Chem., 12, 638 (1969).
(5) Ch. J. Morel and W. G. Stoll, Helv. Chim. Acta, 33, 516 (1950).
(6) K. Takagi, I. Takayanagi, and K. Fujie, Chem. Pharm. Bull., 6, 716 (1958).
(7) J. M. Van Rossum, Arch. Int. Pharmacodyn. Ther., 143, 299 (1963).
(8) M. S. K. Ghouri and T. J. Haley, J. Pharm. Sci., 58, 511 (1969).
(9) J. R. Boissier, R. Ratouis, C. Dumont, P. H. Derible, and J. P. Lavaux, J. Med. Chem., 13, 971 (1970).
(10) W. R. Kirner, J. Amer. Chem. Soc., 50, 1955 (1928).
(11) Agripat S. A., French Patent 1,484,502 (1967); Chem. Abstr., 68, 95502 (1968).

